R&J Lead Acid Battery Wet R & J Batteries (NZ) Ltd

Chemwatch: **5319-55** Version No: **8.1**

Safety Data Sheet according to the Health and Safety at Work (Hazardous Substances) Regulations 2017

Chemwatch Hazard Alert Code: 4

Issue Date: **06/07/2023** Print Date: **06/07/2023** L.GHS.NZL.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier		
Product name	R&J Lead Acid Battery Wet	
Synonyms	Lead/Acid Battery	
Proper shipping name	BATTERIES, WET, FILLED WITH ACID, electric storage	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses

Electric storage battery. Use involves discharge then regenerative charging cycle from external DC power source. CHARGING HAZARD. Completion of charging process includes evolution of highly flammable and explosive hydrogen gas which is readily detonated by electric spark. No smoking or naked lights. Do not attach/detach metal clips or operate open switches during charging process because of arcing/sparking hazard. Overcharging to excess results in vigorous hydrogen evolution - boiling - which may causegeneration of corrosive acid mist. Large installations i.e. battery rooms must be constructed of acid resistant materials and well ventilated.

Details of the manufacturer or supplier of the safety data sheet

Registered company name	R & J Batteries (NZ) Ltd	
Address	57H McLaughlins Road Wiri Auckland 2104 New Zealand	
Telephone	+64 9 636 5980	
Fax	Not Available	
Website	rjbatt.co.nz	
Email	rjbatt@rjbatt.co.nz	

Emergency telephone number

Association / Organisation	CHEMWATCH EMERGENCY RESPONSE (24/7)	
Emergency telephone numbers	+64 800 700 112 (Toll-free - use within NZ)	
Other emergency telephone numbers	+61 3 9573 3188 (Alternative global number)	

Once connected and if the message is not in your preferred language then please dial 01

SECTION 2 Hazards identification

Classification of the substance or mixture

Classification [1]	Acute Toxicity (Oral) Category 3, Skin Corrosion/Irritation Category 1A, Serious Eye Damage/Eye Irritation Category 1, Germ Cell Mutagenicity Category 2, Carcinogenicity Category 2, Reproductive Toxicity Effects on or via Lactation, Specific Target Organ Toxicity - Repeated Exposure Category 1, Hazardous to the Aquatic Environment Acute Hazard Category 1		
Legend:	Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI		
Determined by Chemwatch using GHS/HSNO criteria	6.1C (oral), 8.2A, 8.3A, 6.6B, 6.7B, 6.8C, 6.9A, 9.1A		

Label elements

Hazard pictogram(s)

Signal word Danger

Hazard statement(s)

H301	Toxic if swallowed.
H314	Causes severe skin burns and eye damage.
H341	Suspected of causing genetic defects.
H351	Suspected of causing cancer.
H362	May cause harm to breast-fed children.

Chemwatch: 5319-55 Version No: 8.1

Page 2 of 13 **R&J Lead Acid Battery Wet**

Issue Date: 06/07/2023 Print Date: 06/07/2023

H372	Causes damage to organs through prolonged or repeated exposure.
H400	Very toxic to aquatic life.

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.
P260	Do not breathe dust/fume.
P263	Avoid contact during pregnancy and while nursing.
P264	Wash all exposed external body areas thoroughly after handling.
P270	Do not eat, drink or smoke when using this product.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P273	Avoid release to the environment.

Precautionary statement(s) Response

P301+P310	IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider.		
P301+P330+P331	WALLOWED: Rinse mouth. Do NOT induce vomiting.		
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].		
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.		
P308+P313	F exposed or concerned: Get medical advice/ attention.		
P363	Wash contaminated clothing before reuse.		
P391	Collect spillage.		
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.		

Precautionary statement(s) Storage

P405 Store locked up.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight] Name		
7439-92-1	30-40	lead	
68411-78-9	30-40	lead oxide	
7664-93-9	10-15	sulfuric acid	
Not Available		as sulfuric acid <51%	
9003-56-9)4-7	styrene/ butadiene/ acrylonitrile copolymer	
9003-07-0) polypropylene		
Legend:	Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; Classification drawn from C&L * EU IOELVs available		

SECTION 4 First aid measures

Description	ot	first	aıd	measures

Description of first aid measur	es
Eye Contact	 If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.

► Transport to hospital, or doctor.

Chemwatch: 5319-55 Page 3 of 13 Version No: 8.1

R&J Lead Acid Battery Wet

Issue Date: 06/07/2023 Print Date: 06/07/2023

Ingestion

- For advice, contact a Poisons Information Centre or a doctor at once.
- Urgent hospital treatment is likely to be needed.
- If swallowed do NOT induce vomiting
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink
- Transport to hospital or doctor without delay.

Indication of any immediate medical attention and special treatment needed

For acute or short term repeated exposures to strong acids

- Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.
- Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling
- Intravenous lines should be established immediately in all cases where there is evidence of circulatory compromise.
- Figure 3 Strong acids produce a coagulation necrosis characterised by formation of a coagulum (eschar) as a result of the dessicating action of the acid on proteins in specific tissues. INGESTION:
- Immediate dilution (milk or water) within 30 minutes post ingestion is recommended.
- DO NOT attempt to neutralise the acid since exothermic reaction may extend the corrosive injury.
- ▶ Be careful to avoid further vomit since re-exposure of the mucosa to the acid is harmful. Limit fluids to one or two glasses in an adult.
- Charcoal has no place in acid management.
- Some authors suggest the use of lavage within 1 hour of ingestion.

SKIN:

- ▶ Skin lesions require copious saline irrigation. Treat chemical burns as thermal burns with non-adherent gauze and wrapping.
- ▶ Deep second-degree burns may benefit from topical silver sulfadiazine.

FYF.

- Eye injuries require retraction of the eyelids to ensure thorough irrigation of the conjuctival cul-de-sacs. Irrigation should last at least 20-30 minutes. DO NOT use neutralising agents or any other additives. Several litres of saline are required
- Cycloplegic drops, (1% cyclopentolate for short-term use or 5% homatropine for longer term use) antibiotic drops, vasoconstrictive agents or artificial tears may be indicated dependent on the severity of the injury.
- ▶ Steroid eye drops should only be administered with the approval of a consulting ophthalmologist).

[Ellenhorn and Barceloux: Medical Toxicology]

SECTION 5 Firefighting measures

Extinguishing media

- ► Water spray or fog.
- ► Foam
- Dry chemical powder.
- ▶ BCF (where regulations permit).
- Carbon dioxide.

Special hazards arising from the substrate or mixture

Fire Incompatibility Charging process and particularly overcharging produces highly flammable and explosive hydrogen gas.

Advice for firefighters

- ▶ Alert Fire Brigade and tell them location and nature of hazard.
 - ▶ Wear full body protective clothing with breathing apparatus
 - ▶ Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area Fire Fighting
 - Do not approach containers suspected to be hot.
 - Cool fire exposed containers with water spray from a protected location.
 - If safe to do so, remove containers from path of fire.
 - Equipment should be thoroughly decontaminated after use.

Fire/Explosion Hazard

- Non combustible. Not considered to be a significant fire risk.
- Acids may react with metals to produce hydrogen, a highly flammable and explosive gas.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- ▶ May emit corrosive, poisonous fumes. May emit acrid smoke.

Decomposition may produce toxic fumes of:

sulfur oxides (SOx)

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills

- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite
- Wipe up.
- Place in a suitable, labelled container for waste disposal

Chemwatch: 5319-55 Page 4 of 13 Issue Date: 06/07/2023 Version No: 8.1

Print Date: 06/07/2023 **R&J Lead Acid Battery Wet**

Acid spills may be neutralised wirh soda ash or slaked lime.

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Stop leak if safe to do so.
- **Major Spills** Contain spill with sand, earth or vermiculite.
 - ► Collect recoverable product into labelled containers for recycling.
 - Neutralise/decontaminate residue (see Section 13 for specific agent).
 - Collect solid residues and seal in labelled drums for disposal.
 - Wash area and prevent runoff into drains.
 - After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
 - If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Wear protective clothing when risk of exposure occurs.

Use in a well-ventilated area

Safe handling

Avoid smoking, naked lights or ignition sources.

When handling, **DO NOT** eat, drink or smoke.

Wash hands with soap and water after handling.

Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Other information

- Store in original containers. ► Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container	Normally packed with inert cushioning material.
Storage incompatibility	Protect from accidental short-circuit.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
New Zealand Workplace Exposure Standards (WES)	lead	Inhalable dust (not otherwise classified)	10 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	lead	Lead, inorganic dusts and fumes, as Pb	0.05 mg/m3	Not Available	Not Available	carcinogen category 2 - Suspected human carcinogen (bio) - Exposure can also be estimated by biological monitoring oto - Ototoxin
New Zealand Workplace Exposure Standards (WES)	lead	Respirable dust (not otherwise classified)	3 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	lead oxide	Respirable dust (not otherwise classified)	3 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	lead oxide	Lead, inorganic dusts and fumes, as Pb	0.05 mg/m3	Not Available	Not Available	carcinogen category 2 - Suspected human carcinogen (bio) - Exposure can also be estimated by biological monitoring oto - Ototoxin
New Zealand Workplace Exposure Standards (WES)	lead oxide	Inhalable dust (not otherwise classified)	10 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	sulfuric acid	Sulphuric acid	0.1 mg/m3	Not Available	Not Available	carcinogen category 1 - Known or presumed human carcinogen
New Zealand Workplace Exposure Standards (WES)	styrene/ butadiene/ acrylonitrile copolymer	Respirable dust (not otherwise classified)	3 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	styrene/ butadiene/ acrylonitrile copolymer	Inhalable dust (not otherwise classified)	10 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	polypropylene	Inhalable dust (not otherwise classified)	10 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	polypropylene	Respirable dust (not otherwise classified)	3 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
lead	0.15 mg/m3	120 mg/m3	700 mg/m3
sulfuric acid	Not Available	Not Available	Not Available
polypropylene	5.2 mg/m3	58 mg/m3	350 mg/m3

Chemwatch: **5319-55**Version No: **8.1**

Page 5 of 13

R&J Lead Acid Battery Wet

Issue Date: **06/07/2023**Print Date: **06/07/2023**

Ingredient	Original IDLH	Revised IDLH
lead	Not Available	Not Available
lead oxide	100 mg/m3	Not Available
sulfuric acid	15 mg/m3	Not Available
styrene/ butadiene/ acrylonitrile copolymer	Not Available	Not Available
polypropylene	Not Available	Not Available

MATERIAL DATA

None assigned. Refer to individual constituents.

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Individual protection measures, such as personal protective equipment

Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure.

- Chemical goggles. Whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted. [AS/NZS 1337.1, EN166 or national equivalent]
- Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection.
- Alternatively a gas mask may replace splash goggles and face shields.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

Eve and face protection

Skin protection See Hand protection below

Hands/feet protection

Wear chemical protective gloves, e.g. PVC.

Wear safety footwear

Body protection

See Other protection below

• Overalls.

Other protection

- PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower.

Issue Date: 06/07/2023 Print Date: 06/07/2023

Recommended material(s)

Version No: 8.1

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computergenerated selection:

R&J Lead Acid Battery Wet

Material	СРІ
NATURAL RUBBER	A
NATURAL+NEOPRENE	A
NEOPRENE	A
NEOPRENE/NATURAL	A
NITRILE	A
PE	A
PVC	A
SARANEX-23	А

^{*} CPI - Chemwatch Performance Index

A: Best Selection

- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type AE-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AE-AUS P2	-	AE-PAPR-AUS / Class 1 P2
up to 50 x ES	-	AE-AUS / Class 1 P2	-
up to 100 x ES	-	AE-2 P2	AE-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or $hydrogen\ cyanide(HCN),\ B3=Acid\ gas\ or\ hydrogen\ cyanide(HCN),\ E=Sulfur$ dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

SECTION 9 Physical and chemical properties

Appearance

Information on basic physical and chemical properties

A manufactured article cased in plastic with a sealed case, terminals and flame arrestor vent caps. Case colour varies. Essentially odourless. The hazard of lead acid batteries include: CORROSIVE CONTENTS SHORT CIRCUIT - accidental discharge. Current flow by external short circuit may heat metals to welding temperatures with fire hazard; internal heat generated may boil battery acid with evolution of large amounts of highly corrosive acid mist/vapour. Boiling may develop internal pressure and cause explosion with scattering of acid contents. Battery circuits must include electrical fusible links; terminals and external metal parts must be insulated. Do not clean terminals, battery

top with conducting liquids. SPILL - damage to casing or overturning may cause corrosive acid contents to spill, causing skin burns on contact. Acid reacts quickly with many metals, generating highly flammable and explosive hydrogen gas; may also weaken metal structures

Physical state	Manufactured	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable
pH (as supplied)	<1 acid content	Decomposition temperature (°C)	Not Applicable
Melting point / freezing point (°C)	>149 for case	Viscosity (cSt)	Not Applicable
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Applicable	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	74.2 hydrogen gas	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	4.1 hydrogen gas	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Not Applicable	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Applicable

R&J Lead Acid Battery Wet

Issue Date: **06/07/2023**Print Date: **06/07/2023**

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	► Contact with alkaline material liberates heat
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on	toxicological effects
----------------	-----------------------

Not normally a hazard due to physical form of product.

Inhaled

Acidic corrosives produce respiratory tract irritation with coughing, choking and mucous membrane damage. Symptoms of exposure may include dizziness, headache, nausea and weakness. In more severe exposures, pulmonary oedema may be evident either immediately or after a latent period of 5-72 hours. Symptoms of pulmonary oedema include a tightness in the chest, dyspnoea, frothy sputum and cyanosis. Examination may reveal hypotension, a weak and rapid pulse and moist rates. Death, due to anoxia, may occur several hours after onset of the pulmonary oedema.

Exposure to high concentrations causes bronchitis and is characterised by the onset of haemorrhagic pulmonary oedema.

Ingestion

Ingestion of acidic corrosives may produce circumoral burns with a distinct discolouration of the mucous membranes of the mouth, throat and oesophagus. Immediate pain and difficulties in swallowing and speaking may also be evident. Oedema of the epiglottis may produce respiratory distress and possibly, asphyxia. Nausea, vomiting, diarrhoea and a pronounced thirst may occur. More severe exposures may produce a vomitus containing fresh or dark blood and large shreds of mucosa. Shock, with marked hypotension, weak and rapid pulse, shallow respiration and clammy skin may be symptomatic of the exposure. Circulatory collapse may, if left untreated, result in renal failure. Severe cases may show gastric and oesophageal perforation with peritonitis, fever and abdominal rigidity. Stricture of the oesophageal, gastric and pyloric sphincter may occur as within several weeks or may be delayed for years. Death may be rapid and often results from asphyxia, circulatory collapse or aspiration of even minute amounts. Delayed deaths may be due to peritonitis, severe nephritis or pneumonia. Coma and convulsions may be terminal.

Skin Contact

Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of scar tissue

Eye

Direct eye contact with acid corrosives may produce pain, lachrymation, photophobia and burns. Mild burns of the epithelia generally recover rapidly and completely. Severe burns produce long-lasting and possible irreversible damage. The appearance of the burn may not be apparent for several weeks after the initial contact. The cornea may ultimately become deeply vascularised and opaque resulting in blindness.

Repeated or prolonged exposure to acids may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis

(rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis.

The impact of inhaled acidic agents on the respiratory tract depends upon a number of interrelated factors. These include physicochemical

Chronic

characteristics, e.g., gas versus aerosol; particle size (small particles can pentrate deeper into the lung); water solubility (more soluble agents are more likely to be removed in the nose and mouth). Given the general lack of information on the particle size of aerosols involved in occupational exposures to acids, it is difficult to identify their principal deposition site within the respiratory tract. Acid mists containing particles with a diameter of up to a few micrometers will be deposited in both the upper and lower airways. They are irritating to mucous epithelia, they cause dental erosion, and they produce acute effects in the lungs (symptoms and changes in pulmonary function). Asthmatics appear to be at particular risk for pulmonary effects.

Occupational exposure to strong inorganic acid mists containing sulfuric acid is designated by IARC to be carcinogenic, increased risk of laryngeal cancer being seen with chronic exposures. Repeated minor exposures to mists can cause erosion of teeth and inflammation of the upper respiratory tract leading to chronic bronchitis. Repeated skin contact with dilute solutions may produce dermatitis. Lungs of sulfuric acid plant workers appear to be less affected than the lungs of workers exposed to "dust". There is evidence that corrosion of tooth enamel occurs at 1 mg/m3 but that acclimated workers could tolerate three to four times that level. Forming room workers in a battery factory exposed to 3 to 16 mg/m3 sulfuric acid mist concentrations exhibited the most serious signs of erosion whilst charging room workers, exposed to 0.08 to 2.5 mg/m3 were affected to a lesser degree. Workers chronically exposed to sulfuric acid mists may show various skin lesions, tracheobronchitis, stomatitis, conjunctivitis and gastritis.

R&J Lead Acid Battery Wet	TOXICITY	IRRITATION
	Not Available	Not Available
lead	TOXICITY	IRRITATION
	Not Available	Not Available
lead oxide	TOXICITY	IRRITATION
	Not Available	Not Available
	TOXICITY	IRRITATION
sulfuric acid	Not Available	Eye (rabbit): 1.38 mg SEVERE
		Eye (rabbit): 5 mg/30sec SEVERE
styrene/ butadiene/ acrylonitrile copolymer	TOXICITY	IRRITATION
	Not Available	Not Available

Chemwatch: 5319-55 Page 8 of 13 Version No: 8.1

R&J Lead Acid Battery Wet

Issue Date: 06/07/2023 Print Date: 06/07/2023

TOXICITY IRRITATION polypropylene Not Available Not Available Leaend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

LEAD

WARNING: Lead is a cumulative poison and has the potential to cause abortion and intellectual impairment to unborn children of pregnant

I FAD OXIDE

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Occupational exposures to strong inorganic acid mists of sulfuric acid:

SULFURIC ACID

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

WARNING: For inhalation exposure ONLY: This substance has been classified by the IARC as Group 1: CARCINOGENIC TO HUMANS

STYRENE/ BUTADIENE/ **ACRYLONITRILE** COPOLYMER

Ultrafine particles (UFPs) may be produced at lower temperatures during the 3D printing process Concerns have been raised regarding airborne UFP concentrations generated while printing with ABS, as UFPs have been linked with adverse health effects

for poly-alpha-olefins (PAOs):

PAOs are highly branched isoparaffinic chemicals produced by oligomerisation of 1-octene, 1-decene, and/or 1-dodecene. The crude polyalphaolefin mixture is then distilled into appropriate product fractions to meet specific viscosity specifications and hydrogenated. Read across data exist for health effects endpoints from the following similar hydrogenated long chain branched alkanes derived from a C8, C10, and/or C12 alpha olefins:

- ▶ Decene homopolymer
- ► Decene/dodecene copolymer
- ► Octene/decene/dodecene copolymer

The data for these structural analogs demonstrated no evidence of health effects. In addition, there is evidence in the literature that alkanes with 30 or more carbon atoms are unlikely to be absorbed when administered orally. The physicochemical data suggest that it is unlikely that significant absorption will occur. If a substance of the size and structure of a typical PAO is absorbed, then the principal mechanisms of absorption after oral administration are likely to be passive diffusion and absorption by way of the lymphatic system. The former requires both good lipid solubility and good water solubility as the substance has to partition from an aqueous environment through a lipophilic membrane into another aqueous environment during absorption. Absorption by way of the lymphatics occurs by mechanisms analogous to those that absorb fatty acids and is limited by the size of the molecule. Lipophilicity generally enhances the ability of chemicals to cross biological membranes. Biotransformation by mixed function oxidases often increases the water solubility of a substance; however, existing data suggest that these substances will not undergo oxidation to more hydrophilic metabolites. Finally, a chemical must have an active functional group that can interact chemically or physically with the target cell or receptor upon reaching it; there are no moieties in PAOs that represent a functional group that may have biological activity. The water solubilities of a C10 dimer PAO and a C12 trimer PAO were determined to be <1 ppb and < 1 ppt respectively. The partition coefficient for a C12 trimer PAO was determined to be log Kow of >7 . Given the very low water solubility it is extremely unlikely that PAOs will be absorbed by passive diffusion following oral administration, and the size of the molecules suggest that the extent of lymphatic absorption is likely to be very low. Although PAOs are relatively large lipophilic compounds, and molecular size may be a critical limiting determinant for absorption, there is some evidence that these substances are absorbed. However, the lack of observed toxicity in the studies with PAOs suggests that these products are absorbed poorly, if at all. Furthermore, a review of the literature regarding the absorption and metabolism of long chain alkanes indicates that alkanes with 30+ carbon atoms are unlikely to be absorbed. For example the absorption of squalane, an analogous C30 product, administered orally to male CD rats was examined - essentially all of the squalane was recovered unchanged in the faeces. At the same time, the hydrophobic properties of PAOs suggest that, should they be absorbed, they would undergo limited distribution in the aqueous systemic circulation and reach potential target organs in limited concentrations.

POLYPROPYLENE

In addition to the general considerations discussed above, the low volatility of PAOs indicates that, under normal conditions of use or transportation, exposure by the inhalation route is unlikely. In particular, the high viscosity of these substances suggests that it would be difficult to generate a high concentration of respirable particles in the air.

Acute toxicity: PAOs (decene/dodecene copolymer, octene/decene/dodecene homo-polymer, and dodecene trimer) have been adequately tested for acute oral toxicity. There were no deaths when the test materials were administered at doses of 5,000 mg/kg (decene/dodecene copolymer and dodecene trimer) and at 2,000 mg/kg (octene/decene/dodecene copolymer) in rats. Overall, the acute oral LD50 for these substances was greater than the 2000 mg/kg limit dose, indicating a relatively low order of toxicity.

PAOs (decene/dodecene copolymer, octene/decene/dodecene copolymer, and dodecene trimer) have been tested for acute dermal toxicity. No mortality was observed for any substance when administered at the limit dose of 2000 or 5000 mg/kg. Overall, the acute dermal LD50 for these substances was greater than the 2000 mg/kg limit dose, indicating a relatively low order of toxicity

1-Decene, homopolymer, is absorbed (unexpectedly for a high molecular weight polymer) to a moderate degree in rat skin and is eliminated slowly

PAOs (decene homopolymer, decene/dodecene copolymer, and decene trimer) have been tested for acute inhalation toxicity. Rats were exposed to aerosols of the substances at nominal atmospheric concentrations of 2.5, 5.0, and 5.06 mg/L, respectively, for four hours. These levels were the maximum attainable concentrations under the conditions of the tests, due to the low volatility and high viscosity of the test material. No mortality was noted, and all animals fully recovered following depuration. The lack of mortality at concentrations at or above the limit dose of 2.0 mg/L indicates a relatively low order of toxicity for these substances.

Repeat dose toxicity: Eight repeated-dose toxicity studies using two different animal species, rats and mice, and oral and dermal routes of administration have been conducted with three structural analogs. These data suggest that the structural analogs exhibit a low order of toxicity following repeated applications, due to their similarity in chemical structures and physicochemical properties

One 28-day oral toxicity study in rats, one 90-day dermal and two 90-day dietary studies in rats, and a dermal carcinogenicity study in mice exist for decene homopolymer. A rat oral combined reproductive toxicity and 91-day systemic toxicity study was also conducted with decene homopolymer. In addition, 28-day rat oral toxicity studies exist for two structurally analogous substances (dodecene trimer and octene/decene /dodecene copolymer); and a 90-day rat dermal toxicity study exists for octene/decene/dodecene copolymer. Results from these studies show a low order of repeated dose toxicity. The dermal NOAEL for systemic toxicity studies was equal to or greater than 2000 mg/kg/day. The oral NOAEL for 1-decene homopolymer is between 5,000 and 20,000 mg/kg/day in Sprague-Dawley rats.

Rats exposed repeatedly by dermal exposure at doses of 2000 mg/kg decene/dodecene copolymer showed increased incidences of hyperplasia of the sebaceous glands, hyperplasia/hyperkeratosis of the epidermis and dermal inflammation. These symptoms generally subsided within 2

Chemwatch: 5319-55 Page 9 of 13

Version No: 8.1 Ps LL and Apid Pate

R&J Lead Acid Battery Wet

Issue Date: **06/07/2023**Print Date: **06/07/2023**

weeks. Males showed decreased body weight gain and altered serum chemistry.

In a 90-day feeding study rats receiving 20000 ppm of 1-decene, homopolymer, hydrogenated did not exhibit any clinical signs of systemic toxicity. Marginal effects on clinical chemistry (glucose and ALT in males; sodium, phosphorus and calcium in females) were seen.

Reproductive toxicity: Data are available for decene homopolymer. Results from these studies show a low order of reproductive/ developmental toxicity. The NOAEL for reproductive toxicity was 1000 mg/kg/day, the highest concentration tested. The lack of effects on fertility in this study or effects on reproductive organs in this or other subchronic studies with closely related chemicals indicates that PAOs are unlikely to exert effects on reproduction.

Developmental toxicity: Decene homopolymer (with 10 ppm of an antioxidant) was administered once daily on gestation days 0-19 via dermal application to presumed-pregnant rats at doses of 0, 800, and 2000 mg/kg/day. Dermal administration of the test material did not adversely affect parameters of reproductive performance during gestation, nor did it adversely affect *in utero* survival and development of the offspring. The NOAEL in this study for developmental parameters was 2000 mg/kg/day.

Genotoxicity: Information for the following PAOs (decene homopolymer, octene/decene/dodecene copolymer, dodecene trimer; and decene/dodecene copolymer [prepared from 10% C12 and 90% C10 alpha olefins; approx. 33% trimer and 51% tetramer, 16% pentamer and higher]) is available. Either bacterial or mammalian gene mutation assays, in vitro chromosomal aberration assays, or in vivo chromosomal aberration assays have been conducted for these substances. Neither mutagenicity nor clastogenicity were exhibited by any of these substances in the referenced in vivo or in vitro tests, with or without metabolic activation.

Carcinogenicity: While alpha-olefin polymers have similar properties to mineral oils, they do not contain polycyclic aromatic hydrocarbons, or other known possible carcinogens.

Decene homopolymer produced no treatment-related tumors in C3H mice treated with a 50 ul/application twice weekly for 104 weeks. In addition, survival (56%) was greater than in any other group, including the untreated control.

STYRENE/ BUTADIENE/
ACRYLONITRILE
COPOLYMER &
POLYPROPYLENE

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

Acute Toxicity	✓	Carcinogenicity	✓
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	✓
Mutagenicity	✓	Aspiration Hazard	×

Legend:

🗶 – Data either not available or does not fill the criteria for classification

🎺 – Data available to make classification

SECTION 12 Ecological information

Toxicity

R&J Lead Acid Battery Wet	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
lead	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
lead oxide	Not Available	Not Available	Not Available	Not Available	Not Availabl
	Endpoint	Test Duration (hr)	Species	Value	Source
sulfuric acid	Not Available	Not Available	Not Available	Not Available	Not Availab
styrene/ butadiene/ acrylonitrile copolymer	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Availabl
	Endpoint	Test Duration (hr)	Species	Value	Source
polypropylene	Not Available	Not Available	Not Available	Not Available	Not Availabl

- Bioconcentration Data 8. Vendor Data

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
polypropylene	LOW	LOW

R&J Lead Acid Battery Wet

Issue Date: **06/07/2023**Print Date: **06/07/2023**

Bioaccumulative potential

Ingredient	Bioaccumulation
polypropylene	LOW (LogKOW = 1.6783)

Mobility in soil

Ingredient	Mobility
polypropylene	LOW (KOC = 23.74)

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal Lead acid batteries are recyclable.

Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017

Disposal Requirements

Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled.

The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous. Only dispose to the environment if a tolerable exposure limit has been set for the substance.

Only deposit the hazardous substance into or onto a landfill or sewage facility or incinerator, where the hazardous substance can be handled and treated appropriately.

SECTION 14 Transport information

Labels Required

Marine Pollutant

HAZCHEM 2R

Land transport (UN)

UN number or ID number	2794		
UN proper shipping name	BATTERIES, WET, FILLED WITH ACID, electric storage		
Transport hazard class(es)	Class 8 Subsidiary risk Not Applicable		
Packing group	Not Applicable		
Environmental hazard	Environmentally hazardous		
Special precautions for user	Special provisions 295 Limited quantity 1 L		

Air transport (ICAO-IATA / DGR)

UN number	2704			
ON Humber	2794			
UN proper shipping name	Batteries, wet, filled with	acid electric storage		
	ICAO/IATA Class	8		
Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable		
	ERG Code	8L		
Packing group	Not Applicable			
Environmental hazard	Environmentally hazardous			
Special precautions for user	Special provisions		A51 A164 A183 A802	
	Cargo Only Packing Instructions		870	
	Cargo Only Maximum	Qty / Pack	400 kg	
	Passenger and Cargo	Packing Instructions	870	
	Passenger and Cargo Maximum Qty / Pack		30 kg	

Page **11** of **13**

R&J Lead Acid Battery Wet

Issue Date: 06/07/2023 Print Date: 06/07/2023

Passenger and Cargo Limited Quantity Packing Instructions	Forbidden
Passenger and Cargo Limited Maximum Qty / Pack	Forbidden

Sea transport (IMDG-Code / GGVSee)

UN number	2794		
UN proper shipping name	BATTERIES, WET, FILLED WITH ACID electric storage		
Transport hazard class(es)	IMDG Class 8 IMDG Subrisk Not Applicable		
Packing group	Not Applicable		
Environmental hazard	Marine Pollutant		
Special precautions for user	EMS Number F-A, S-B Special provisions 295 Limited Quantities 1 L		

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
lead	Not Available
lead oxide	Not Available
sulfuric acid	Not Available
styrene/ butadiene/ acrylonitrile copolymer	Not Available
polypropylene	Not Available

Transport in bulk in accordance with the IGC Code

Product name	Ship Type
lead	Not Available
lead oxide	Not Available
sulfuric acid	Not Available
styrene/ butadiene/ acrylonitrile copolymer	Not Available
polypropylene	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

This substance is to be managed using the conditions specified in an applicable Group Standard

HSR Number	Group Standard
HSR100425	Pharmaceutical Active Ingredients Group Standard 2020

Please refer to Section 8 of the SDS for any applicable tolerable exposure limit or Section 12 for environmental exposure limit.

lead is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 1: Carcinogenic to humans

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

New Zealand Approved Hazardous Substances with controls

lead oxide is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2A: Probably carcinogenic to humans

sulfuric acid is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC

Monographs - Group 1: Carcinogenic to humans New Zealand Approved Hazardous Substances with controls

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification

of Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Workplace Exposure Standards (WES)

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

New Zealand Workplace Exposure Standards (WES)

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Workplace Exposure Standards (WES)

Version No: 8.1

R&J Lead Acid Battery Wet

Issue Date: 06/07/2023 Print Date: 06/07/2023

styrene/ butadiene/ acrylonitrile copolymer is found on the following regulatory lists

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC

Monographs - Not Classified as Carcinogenic

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES)

polypropylene is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC

Monographs - Not Classified as Carcinogenic

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for

Manufactured Nanomaterials (MNMS)

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Workplace Exposure Standards (WES)

Hazardous Substance Location

Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Quantity (Compliance Certificate)	Quantity (Compliance Certificate - Farms >4 ha)	
6.1C	1000 kg or 1000 L	3500 kg or 3500 L	
8.2A	50 kg or 50 L	500 kg or 500 L	

Certified Handler

Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Class of substance	Quantities
Not Applicable	Not Applicable

Refer Group Standards for further information

Maximum quantities of certain hazardous substances permitted on passenger service vehicles

Subject to Regulation 13.14 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Gas (aggregate water capacity in mL)	Liquid (L)	Solid (kg)	Maximum quantity per package for each classification
6.1C	120	1	3	
8.2A	prohibited	prohibited	prohibited	

Tracking Requirements

Not Applicable

National Inventory Status

National Inventory	Status	
Australia - AIIC / Australia Non-Industrial Use	Yes	
Canada - DSL	Yes	
Canada - NDSL	No (lead; sulfuric acid; styrene/ butadiene/ acrylonitrile copolymer; polypropylene)	
China - IECSC	Yes	
Europe - EINEC / ELINCS / NLP	No (styrene/ butadiene/ acrylonitrile copolymer; polypropylene)	
Japan - ENCS	No (lead)	
Korea - KECI	Yes	
New Zealand - NZIoC	No (lead oxide)	
Philippines - PICCS	Yes	
USA - TSCA	Yes	
Taiwan - TCSI	Yes	
Mexico - INSQ	No (lead oxide)	
Vietnam - NCI	Yes	
Russia - FBEPH	No (lead oxide)	
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.	

SECTION 16 Other information

Revision Date	06/07/2023
Initial Date	23/08/2018

SDS Version Summary

Version	Date of Update	Sections Updated		
7.1	23/12/2022	Classification review due to GHS Revision change.		
8.1	20/04/2023	Hazards identification - Classification, Name		

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification

Chemwatch: 5319-55 Page 13 of 13 Issue Date: 06/07/2023 Version No: 8.1

R&J Lead Acid Battery Wet

Print Date: 06/07/2023

committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC - TWA: Permissible Concentration-Time Weighted Average

PC - STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit.

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.